Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Ann Card Anaesth ; 2015 Oct; 18(4): 599-602
Article in English | IMSEAR | ID: sea-165277

ABSTRACT

The indication of pacemaker/AICD removal are numerous. Serious complication can occur during their removal, severe tricuspid regurgitation is one of the complication. The occurrence of PFO is not uncommon among adult population. Shunting across PFO in most circumstance is negligible, but in some necessitates closure due to hypoxemia. We report a case of 62 year old man, while undergoing AICD removal, had an emergency sternotomy for cardiac tamponade. Postoperatively, he experienced profound hypoxemia refractory to oxygen therapy. Transthoracic Echocardiogram was performed to rule out intracardiac shunts at an early stage, but it was difficult to obtain an good imaging windows poststernotomy. A small pulmonary emboli was noted on CTPA, but was not sufficient to account for the level of hypoxemia and did not resolve with anticoagulation. Transesophageal echocardiogram showed flail septal tricuspid valve with severe TR and bidirectional shunt through large PFO. Patient was posted for surgery, tricuspid valve was replaced and PFO surgically closed. Subsequently, patient recovered well ad was discharged to home. Cause of hypoxemia might be due to respiratory or cardiac dysfunction. But for hypoxemia refractory to oxygen therapy, transoesophageal echocardiogram should be always considered and performed early as an diagnostic tool in post cardiac surgical patients.

2.
Ann Card Anaesth ; 2012 Apr; 15(2): 144-155
Article in English | IMSEAR | ID: sea-139658

ABSTRACT

Transesophageal echocardiography (TEE) is a semi-invasive, monitoring and diagnostic tool, which is used in the perioperative management of cardiac surgical and hemodynamically unstable patients. The low degree of invasiveness and the capacity to visualize and assimilate dynamic information that can change the course of the patient management is an important advantage of TEE. Although TEE is reliable, comprehensive, credible, and cost-effective, it must be performed by a trained echocardiographer who understands the indications and the potential complications of the procedure, and has the ability to achieve proper acquisition and interpretation of the echocardiographic data. Adequate knowledge of the physics of ultrasound and the TEE machine controls is imperative to optimize image quality, reduce artifacts, and prevent misinterpretation of diagnosis. Two-dimensional (2D) and Motion (M) mode imaging are used for obtaining anatomical information, while Doppler and Color Flow imaging are used for information on blood flow. 3D technology enables us to view the cardiac structures from different perspectives. Despite the recent advances of 3D TEE, a sharp, optimized 2D image is pivotal for the reconstruction. This article describes the relevant underlying physical principles of ultrasound and focuses on a systematic approach to instrumentation and use of controls in the practical use of transesophageal echocardiography.


Subject(s)
Data Display , Echocardiography/instrumentation , Echocardiography, Doppler , Echocardiography, Doppler, Color , Echocardiography, Three-Dimensional , Echocardiography, Transesophageal/instrumentation , Echocardiography, Transesophageal/methods , Humans , Image Processing, Computer-Assisted , Transducers , Ultrasonics
SELECTION OF CITATIONS
SEARCH DETAIL